Pemanfaatan Sequential Convolutional Neural Networks pada Deteksi Malware Android
Abstract
Sistem operasi mobile yang paling banyak digunakan sekarang ini adalah Android . Kesuksesan android ini juga berdampak pada system keamanan data yang terancan dengan timbulnya penyebaran malware pada platform Android. Ada beberapa aplikasi yang menggunakan android pada google play store yang terkena malware. Malware ini dapat secara sembunyi-sembunyi membuat ponsel korbannya berlangganan dan membayar konten premium tanpa sepengetahuan korban. Penelitian deteksi malware Android ini sangat penting untuk menjaga keamanan dan privasi pengguna. karena proses identifikasi malware yang semakin rumit, maka diperlukan pendekatan deep learning untuk klasifikasi malware. Penelitian ini menggunakan metode sequential models untuk mendeteksi malware android. Hasil pengujian didapat hasil akurasi : 99.07%, presisi : 99.06%, recall : 98.32%, dan f1 score : 98.69%.
Downloads
References
[2] M. Gohari, S. Hashemi, and L. Abdi, “Android Malware Detection and Classification Based on Network Traffic Using Deep Learning,” 2021 7th Int. Conf. Web Res. ICWR 2021, pp. 71–77, 2021, doi: 10.1109/ICWR51868.2021.9443025.
[3] X. Sun, J. Peng, H. Kang, and Y. Shen, “Android Malware Detection using Sequential Convolutional Neural Networks,” J. Phys. Conf. Ser., vol. 1168, no. 6, 2019, doi: 10.1088/1742-6596/1168/6/062010.
[4] R. Oak, M. Du, D. Yan, H. Takawale, and I. Amit, “Malware detection on highly imbalanced data through sequence modeling,” Proc. ACM Conf. Comput. Commun. Secur., pp. 37–48, 2019, doi: 10.1145/3338501.3357374.
[5] R. B. Hadiprakoso, N. Qomariasih, and R. N. Yasa, “Identifikasi Malware Android Menggunakan Pendekatan Analisis Hibrid Dengan Deep Learning,” J. Teknol. Inf. Univ. Lambung Mangkurat, vol. 6, no. 2, pp. 77–84, 2021, doi: 10.20527/jtiulm.v6i2.82.
[6] R. Agrawal, J. W. Stokes, M. Marinescu, and K. Selvaraj, “Neural Sequential Malware Detection with Parameters,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., vol. 2018-April, pp. 2656–2660, 2018, doi: 10.1109/ICASSP.2018.8461583.
[7] A. Mahindru and A. L. Sangal, MLDroid—framework for Android malware detection using machine learning techniques, vol. 33, no. 10. Springer London, 2021. doi: 10.1007/s00521-020-05309-4.
[8] S. K. Sasidharan and C. Thomas, “ProDroid — An Android malware detection framework based on profile hidden Markov model,” Pervasive Mob. Comput., vol. 72, p. 101336, 2021, doi: 10.1016/j.pmcj.2021.101336.
[9] R. Feng, J. Q. Lim, S. Chen, S. W. Lin, and Y. Liu, “SeqMobile: An Efficient Sequence-Based Malware Detection System Using RNN on Mobile Devices,” Proc. IEEE Int. Conf. Eng. Complex Comput. Syst. ICECCS, vol. 2020-October, pp. 63–72, 2020, doi: 10.1109/ICECCS51672.2020.00015.
[10] R. Feng, S. Chen, X. Xie, G. Meng, S. W. Lin, and Y. Liu, “A Performance-Sensitive Malware Detection System Using Deep Learning on Mobile Devices,” IEEE Trans. Inf. Forensics Secur., vol. 16, no. XX, pp. 1563–1578, 2021, doi: 10.1109/TIFS.2020.3025436.
[11] S. I. Imtiaz, S. ur Rehman, A. R. Javed, Z. Jalil, X. Liu, and W. S. Alnumay, “DeepAMD: Detection and identification of Android malware using high-efficient Deep Artificial Neural Network,” Futur. Gener. Comput. Syst., vol. 115, pp. 844–856, 2021, doi: 10.1016/j.future.2020.10.008.
[12] Y. Nan, J. Ju, Q. Hua, H. Zhang, and B. Wang, “A-MobileNet: An approach of facial expression recognition,” Alexandria Eng. J., vol. 61, no. 6, pp. 4435–4444, 2022, doi: 10.1016/j.aej.2021.09.066.
[13] Oktafiandi, H., Winarnie, W., & Olajuwon, S. (2023). Perbandingan Algoritma untuk Analisis Sentimen Terhadap Google Play Store Menggunakan Machine Learning. Jurnal Ekonomi Dan Teknik Informatika, 11(2), 16-21. doi:10.37601/jneti.v11i2.234
Jurnal Ekonomi dan Teknik Informatika